255 research outputs found

    MicroRNA Identification Based on Bioinformatics Approaches

    Get PDF

    TextNetTopics Pro, a topic model-based text classification for short text by integration of semantic and document-topic distribution information

    Get PDF
    With the exponential growth in the daily publication of scientific articles, automatic classification and categorization can assist in assigning articles to a predefined category. Article titles are concise descriptions of the articles’ content with valuable information that can be useful in document classification and categorization. However, shortness, data sparseness, limited word occurrences, and the inadequate contextual information of scientific document titles hinder the direct application of conventional text mining and machine learning algorithms on these short texts, making their classification a challenging task. This study firstly explores the performance of our earlier study, TextNetTopics on the short text. Secondly, here we propose an advanced version called TextNetTopics Pro, which is a novel short-text classification framework that utilizes a promising combination of lexical features organized in topics of words and topic distribution extracted by a topic model to alleviate the data-sparseness problem when classifying short texts. We evaluate our proposed approach using nine state-of-the-art short-text topic models on two publicly available datasets of scientific article titles as short-text documents. The first dataset is related to the Biomedical field, and the other one is related to Computer Science publications. Additionally, we comparatively evaluate the predictive performance of the models generated with and without using the abstracts. Finally, we demonstrate the robustness and effectiveness of the proposed approach in handling the imbalanced data, particularly in the classification of Drug-Induced Liver Injury articles as part of the CAMDA challenge. Taking advantage of the semantic information detected by topic models proved to be a reliable way to improve the overall performance of ML classifiers

    GeNetOntology: identifying affected gene ontology terms via grouping, scoring, and modeling of gene expression data utilizing biological knowledge-based machine learning

    Get PDF
    Introduction: Identifying significant sets of genes that are up/downregulated under specific conditions is vital to understand disease development mechanisms at the molecular level. Along this line, in order to analyze transcriptomic data, several computational feature selection (i.e., gene selection) methods have been proposed. On the other hand, uncovering the core functions of the selected genes provides a deep understanding of diseases. In order to address this problem, biological domain knowledge-based feature selection methods have been proposed. Unlike computational gene selection approaches, these domain knowledge-based methods take the underlying biology into account and integrate knowledge from external biological resources. Gene Ontology (GO) is one such biological resource that provides ontology terms for defining the molecular function, cellular component, and biological process of the gene product.Methods: In this study, we developed a tool named GeNetOntology which performs GO-based feature selection for gene expression data analysis. In the proposed approach, the process of Grouping, Scoring, and Modeling (G-S-M) is used to identify significant GO terms. GO information has been used as the grouping information, which has been embedded into a machine learning (ML) algorithm to select informative ontology terms. The genes annotated with the selected ontology terms have been used in the training part to carry out the classification task of the ML model. The output is an important set of ontologies for the two-class classification task applied to gene expression data for a given phenotype.Results: Our approach has been tested on 11 different gene expression datasets, and the results showed that GeNetOntology successfully identified important disease-related ontology terms to be used in the classification model.Discussion: GeNetOntology will assist geneticists and scientists to identify a range of disease-related genes and ontologies in transcriptomic data analysis, and it will also help doctors design diagnosis platforms and improve patient treatment plans

    Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE) rather than recursive feature elimination (RFE). We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE.</p> <p>Results</p> <p>We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs), a supervised machine learning classification method, to identify and score (rank) those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE) is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA) with recursive feature elimination (SVM-RFE and PDA-RFE) are used to remove genes based on their individual discriminant weights.</p> <p>Conclusion</p> <p>SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together provide greater insight into the structure of the microarray data. Clustering genes for classification appears to result in some concomitant clustering of samples into subgroups.</p> <p>Our present implementation of SVM-RCE groups genes using the correlation metric. The success of the SVM-RCE method in classification suggests that gene interaction networks or other biologically relevant metrics that group genes based on functional parameters might also be useful.</p> <p/

    The impact of feature selection on one and two-class classification performance for plant microRNAs

    Get PDF
    MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ~29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ~13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.The Scientific and Technological Research Council of Turkey (grant number 113E326

    Learning from positive examples when the negative class is undetermined- microRNA gene identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The application of machine learning to classification problems that depend only on positive examples is gaining attention in the computational biology community. We and others have described the use of two-class machine learning to identify novel miRNAs. These methods require the generation of an artificial negative class. However, designation of the negative class can be problematic and if it is not properly done can affect the performance of the classifier dramatically and/or yield a biased estimate of performance. We present a study using one-class machine learning for microRNA (miRNA) discovery and compare one-class to two-class approaches using naïve Bayes and Support Vector Machines. These results are compared to published two-class miRNA prediction approaches. We also examine the ability of the one-class and two-class techniques to identify miRNAs in newly sequenced species.</p> <p>Results</p> <p>Of all methods tested, we found that 2-class naive Bayes and Support Vector Machines gave the best accuracy using our selected features and optimally chosen negative examples. One class methods showed average accuracies of 70–80% versus 90% for the two 2-class methods on the same feature sets. However, some one-class methods outperform some recently published two-class approaches with different selected features. Using the EBV genome as and external validation of the method we found one-class machine learning to work as well as or better than a two-class approach in identifying true miRNAs as well as predicting new miRNAs.</p> <p>Conclusion</p> <p>One and two class methods can both give useful classification accuracies when the negative class is well characterized. The advantage of one class methods is that it eliminates guessing at the optimal features for the negative class when they are not well defined. In these cases one-class methods can be superior to two-class methods when the features which are chosen as representative of that positive class are well defined.</p> <p>Availability</p> <p>The OneClassmiRNA program is available at: <abbrgrp><abbr bid="B1">1</abbr></abbrgrp></p

    microBiomeGSM: the identification of taxonomic biomarkers from metagenomic data using grouping, scoring and modeling (G-S-M) approach

    Get PDF
    Numerous biological environments have been characterized with the advent of metagenomic sequencing using next generation sequencing which lays out the relative abundance values of microbial taxa. Modeling the human microbiome using machine learning models has the potential to identify microbial biomarkers and aid in the diagnosis of a variety of diseases such as inflammatory bowel disease, diabetes, colorectal cancer, and many others. The goal of this study is to develop an effective classification model for the analysis of metagenomic datasets associated with different diseases. In this way, we aim to identify taxonomic biomarkers associated with these diseases and facilitate disease diagnosis. The microBiomeGSM tool presented in this work incorporates the pre-existing taxonomy information into a machine learning approach and challenges to solve the classification problem in metagenomics disease-associated datasets. Based on the G-S-M (Grouping-Scoring-Modeling) approach, species level information is used as features and classified by relating their taxonomic features at different levels, including genus, family, and order. Using four different disease associated metagenomics datasets, the performance of microBiomeGSM is comparatively evaluated with other feature selection methods such as Fast Correlation Based Filter (FCBF), Select K Best (SKB), Extreme Gradient Boosting (XGB), Conditional Mutual Information Maximization (CMIM), Maximum Likelihood and Minimum Redundancy (MRMR) and Information Gain (IG), also with other classifiers such as AdaBoost, Decision Tree, LogitBoost and Random Forest. microBiomeGSM achieved the highest results with an Area under the curve (AUC) value of 0.98% at the order taxonomic level for IBDMD dataset. Another significant output of microBiomeGSM is the list of taxonomic groups that are identified as important for the disease under study and the names of the species within these groups. The association between the detected species and the disease under investigation is confirmed by previous studies in the literature. The microBiomeGSM tool and other supplementary files are publicly available at: https://github.com/malikyousef/microBiomeGSM

    Global impact and clinical management of severe respiratory syndrome coronovirus-2 (COVID-19)

    Get PDF
    Coronaviruses are enveloped non-segmented positive-sense RNA viruses belonging to the family Coronaviridae and the order Nidovirales and broadly distributed in humans and other mammals. The recommendations for the management of COVID-19 are mentioned in a lot of Updated Literature such as in The "L. Spallanzani" National Institute for the Infectious Diseases. These recommendations are considered as expert's opinions, which may be modified according to newly produced literature data. In addition, Chloroquine and its derivative, hydroxychloroquine, have a long history as safe and inexpensive drugs for use in malaria-endemic regions and as daily treatments for autoimmune diseases, with the most common side effect being eye damage after long-term use (Kapoor and Kapoor 2020).  Although previous studies have revealed that chloroquine has therapeutic activity against viruses, including human corona virus OC43 in animal models and SARS-CoV in cell culture studies. we proposed that from natural Medicine the polyphenol compounds in olive leaf extracts were responsible for the stimulation of probiotic Microbes growth and metabolism and that olive leaf extracts ingested in human diet might have the same effect on desirable components of the intestinal microflora, Herbal medicines, plant products, and phototherapeutic have been widely used all over the world since ancient times.  Such as Orange, garlic, Bananas, and lemon have an effect on increasing the immune system. On the other hand; Gold nanoparticles (AuNPs) are a piece of evidence to treat the harmful responses arising from reactive oxygen species (ROS). Silver nanoparticles (AgNPs) are microbial agents which could be potentially used as an alternative to anti-viral to treat human infectious disease, especially influenza; there is a novel treatment by using magnetite nanoparticles as nanomedicine drug for Covid- 19

    The Physical Fields in Asas Al Balagha: A Semantic Study

    Get PDF
    This study sheds light on the semantic fields in the dictionary of “Asas al-Balaghah” by al-Zamakhshari, by applying the principles of that theory to its first part, and it seeks to highlight a historical linguistic dictionary by explaining the approach of al-Zamakhshari in its composition, and researching the true and metaphorical meanings that are addressed, the extent of their limitations or comprehensiveness, and the extent of The effect of time and place on its quality. Explaining the complementary role between the lexicon and the context in determining the connotations of expressions and diversifying them. The study is concerned with counting the meanings that al-Zamakhshari dealt with in his dictionary, analyzing them, and classifying them into interconnected fields of meaning, including the tangible fields that share their connotations for all that can be perceived by the senses, whether the senses are live or inanimate, and the study is concerned with research in the field of the human body, and what It falls under it from subfields, where these fields share semantic relationships that the study worked on detailing, and the study sheds light on lexical generation techniques, and semantic generation mechanisms at Zamakhshari, and shows the role of metaphor in generating new semantic
    corecore